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Weighted mean convergence of generalized Jacobi series is investigated, and the
results are used to prove weighted mean convergence of various interpolating
polynomials based on the zeros of generalized Jacobi polynomials. c' 1993 Academic

Press. Inc.

1. INTRODUCTION

The purpose of this paper is to investigate weighted mean convergence
of the generalized Jacobi series, and weighted mean convergence of
interpolating polynomials based on the zeros of the generalized Jacobi
polynomials.

The generalized Jacobi series is the Fourier series of the generalized
Jacobi polynomials, pAl1', x), which are the orthogonal polynomials in
[ -1, 1] associated with weight functions of the form w(x) =
n~~cilx-l,V', where -1=10 <1 1 <".<1,+1=1 and F i >-1. These
orthogonal polynomials have been studied extensively in [2, 14]. In the
special cases F i = 0, 1~ i ~ r, they reduce to the classical Jacobi polyno
mials, In order to prove the mean convergence of the generalized Jacobi
series, we will prove the following inequality

( 1.1 )

where Sn(f) is the nth partial sum of the generalized Jacobi series of f, U
and V are suitable weight functions, and c is a constant independent of n
and! When U= V, the inequality (l.l) has been studied by Badkov [2],
while in the special cases of the Jacobi polynomials it was considered by
Pollard [19] and Muckenhoupt [II]. Our consideration of different U
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(1.2)l<p<+co,

and V in (1.1) is motivated by the close relation between the weighted
mean convergence of the Fourier orthogonal series and the weighted mean
convergence of the Lagrange interpolating polynomials. This relation, first
discovered by Marcinkiewicz and Zygmund [7,8J in investigating the
mean convergence of the trigonometric interpolation, enables one to reduce
the mean convergence of the Lagrange interpolating polynomials based on
the zeros of the orthogonal polynomials to that of orthogonal series. The
idea of Marcinkiewicz was partly incorporated in the work of Askey [1 J,
and later, of Nevai [14,15]. Recently, we found in [28J that the full
strength of Marcinkiewicz's method can be extended to Lagrange inter
polation based on the zeros of the Jacobi polynomials. With the help of
(1.1), we will further extend this method to the cases of the generalized
Jacobi polynomials. The aim is the inequality of the type

r IPIPwdx~c ±. IP(Xk,,)I" Ak",
-I k~ I

where P is a polynomial of degree at most n - 1, Xkn are the zeros of
p,,( 11', x), c is a constant independent of nand P. The inequality of this type
is called the Marcinkiewicz-Zygmund inequality. Moreover, we shall
extend this inequality to include the derivative values of P in the right hand
side. The latter extension will enable us to deal with the mean convergence
of Hermite interpolation.

The paper is organized as follows. In the next section, we shall give the
definitions and list the basic facts about the generalized Jacobi polyno
mials. We prove some general inequalities in Section 3, and apply them to
prove the inequalities of type (1.1) and the mean convergence of the
generalized Jacobi series in Section 4. The Marcinkiewicz-Zygmund
inequality, its extension, and the mean convergence of interpolating
polynomials are the contents of Part II.

2. PRELIMINARIES

Let d':J. = ':J.'(x) dx be a nonnegative distribution on [ -1, 1]. Let p,,(d':J., x)
be the sequence of polynomials orthonormal with respect to d':J.. The zeros
of p,,(d':J.) are denoted by xk,,(d':J.) and the following order is assumed

(2.1 )

The reproducing kernel functions of the orthogonal system {p ,,(diX)} are
denoted by K,,(diX),

n-J

K,,(diX, x, t) = L pk(d':J., x) pddiX, t).
k=O

(2.2)
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The Christoffel function )'n(da) is defined by

).,,(da, x) = K,,(d:J., x, x) - I.
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(2.3 )

The numbers )'k,,(d:J.) = ),,,(d:J., Xk,,) are called the Cotes numbers. By the
Gauss-Jacobi quadrature formula [22, p.47],

i P(xkn(d:J.»).A'k,,(diX) = r P diX
k = I -I

(2.4 )

holds for every polynomial P Efl2,,_ I' Here, fln is the space of polynomials
of degree at most n.

IfO<p~ +::IJ, thenfEU if Ilfll p < +::IJ, where

O<p<+oc,

and

Ilfllx=esssup If(t)l·
t E [- I, I]

Of course, when 0 < p < I, II ·11 p is not a norm; nevertheless, we keep this
notation for convenience. We will also use the notations 11·11 d" p and 11·11 ... p'

defined by

or (2.5 )

even for 0 < p < I.
Let w be a nonnegative function. We will call w a generalized Jacobi

weight function (w E GJ), if it can be written as

r+ 1

W(x)=TI Ix-tilT,
;=0

(2.6)

for x E [ -1, 1] and w(x) = 0 for Ixl> 1. Note that II' is not necessarily
integrable. We shall call da a generalized Jacobi distribution when a' = !/tw,
where II' E GJ and II' is integrable, !/t is a positive continuous function in
[ - 1, I] and the modulus of continuity w of !/t satisfies

f
l w(t)
--dt< +oc.

o t

Sometimes we shall write T ,(!'.') or Ti(da) in place of T i to indicate that
they are parameters of IV or da respectively. Orthogonal polynomials



240 YUAN XU

corresponding to generalized Jacobi distributions are called generalized
Jacobi polynomials. When r j = 0, 1~ i ~ r, and l{! = 1, "generalized Jacobi"
reduces to "Jacobi."

Throughout this paper, we will use letters c, c1 , c2 , ... , etc. to denote
constants depending only on weight functions and other fixed parameters
involved, but their values may be different at different occurrences, even
within the same formula. The notation A - B means IA I BI ~ c and
IAB~ll ~c.

In the following, we list those properties of the generalized Jacobi poly
nomials that will be used in this paper. For the proof of these properties
and the extensive study of the generalized Jacobi polynomials, see [2, 14].
For WE GJ in the form of (2.6) we define

(2.7)

For da being a generalized Jacobi distribution, we also denote the
corresponding one for ex' = lin... as :x;, = l{!wn'

Then for everyLEMMA 2.1. Let dex be a generalized Jacobi distribution.
positive integer n

IPn(da, x)1 ~ c:x;,(x) - 1/2 ( J 1- x 2 +D-1/2

uniformly for - 1~ x ~ 1 [2, Theorem 1.1, p. 226], in particular

(2.8 )

(2.9)

(2.10)

uniformly for - 1~ x ~ 1, and [14, Theorem 6.3.28, p. 120, and 9.22, p. 166]

An(dex, x) -~ex;,(X)(J1-X+~)(~+D

uniformly for - 1~ x ~ 1, in particular

(2.11 )

uniformly for 1~ k ~ n, where Xkn = xkn(dex), and [14, p. 170]

(2.12 )

uniformly for 1~ k ~ n.
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Let v.' E GJ, for a fixed d> 0, we define Ll n(d) by

Lln(d) = [-1 +dn- 2, l-dn- 2J \01 [t;-dn-1,t;+dn-1J.

We shall use Xc. to denote the characteristic function of a set E.
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LEMMA 2.2 [14, Theorem 6.3.28, p. 120J. Let IV E GJ be integrable. Then
for each 0 < p < +co there exists d = d( p) > 0 such that for every R E 11n'

3. GENERAL INEQUALITIES

In this section, we shall prove the inequalities that will be applied in the
proof of the mean convergence of the generalized Jacobi series. These
inequalities are of the general nature, and are related to the Hardy
inequality and the Hilbert transform theorem. For general weight func
tions, they have been studied by several authors, see, for example, [l3, and
Refs. therein]. However, with the general weight functions, the conditions
under which these inequalities hold are usually too general to check, thus
inappropriate for our purpose. We shall prove these inequalities here for
our special weight functions under simple conditions.

Throughout this paper, the singular integrals are to be taken in the
principal value sense. For p> I, we always use the notation q = pl(p - 1).

First we state three basic lemmas taken from [12].

LEMMA 3.1 [12, Lemma 3, p.438]. Let l<p< +00, r~R, R< -I,
s ~ S, and s < -I. Then

LEMMA 3.2 [12, Lemma 4, p.438]. Let 1 < p< +co, r~R, r> -1,
s ~ S, and S> -1. Then

f+:xl /f+xc IP f+>Oo x'(l+xV-' x g(y)dy dx~c 0 xPxR(l+X)S-Rlg(xWdx.

LEMMA 3.3 [12, Lemma 8, p.440]. Let 1 < p < + co, r> -lip, s <
l-llp, R< l-Ilp, S> -lip, r~ R, and s~ S. Then

f+ ,xc If +>0 g(y) x'(l + xY-' dyl
P

dx ~ c rxc

Ig(y) yR(l + y)S- RIP dy.
o 0 x-y 0
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LEMMA 3.4. Let 1 <p< +00, rp> -1, sq< 1, and r~s. Then

f
AlfBg(V) IP fB .-.-'-dy xrPdx~c !g(x)!P x\Pdx,

o o,\+y 0

Proof Changing variables x = Auj( 1 + u) and J' = Bvj(1 + v) leads to

fA IfB g( Y) IP--dv xrpdx
o ox+y'

=Al+rPBPf()+X \f
o
+'< g(y) 1+u dvl

P

Au(1 +v)+Bv(1 +u) 1+v

xC :J
rp

(I :U)2

J
+X[fU Ig(y)1 I+u JP( U )r

p
du~A'+rp PBP --dv --

o 0 u( 1+ v) 1+ v 1+ u (I + U)2

+A1+rpf+'X[f+X Ig(y)jl+UdvJP(_u_)r
p

du .
o U v(l + U) 1+ v 1 + u (I + U)2

For the last two terms, we apply Lemma 3,1 to the first term with rp - p,
- 2, sp - p, and p - 2 in place of r, s, R, and S, and apply Lemma 3.2 to
the second term with rp, - 2, sp, and p - 2 in place of r, s, R, and S. The
conditions of these two lemmas are satisfied under the conditions of the
present lemma. Thus we have

f
A IfB g(y) IP--dy xrpdx

o 0 x+ Y

~C[A'+rp PBP+Arp+']f+
x

Ig(y)I Pv'P(I+v)-2 'Pdv
o

= c[A 1+rPB- 1- 'P(l + APjBP)] rIg(y)IP y'P dy. I
o

LEMMA 3.5. Let 1< p < + 00. Let U and V be generalized Jacobi weight
functions. Then



if

GENERALIZED JACOBI SERIES 243

or, equivalently, if

and U(x) ~ cV(x), (3.2 )

Ti(U» -lip, Ti(V)<llq, and Ti(V)~Ti(U) (O~i~r+I). (3.3)

Proof To simplify the notation, rewrite T i ( U) = T i , T i ( V) = ,'i' 0 ~ i ~
r + I. Since U(x) -Ix - till', Ix - t i + II r,t' for t,::::; x::::; t,+ I' we have

r
l If I ~(y), dylP UP(x) dx

'-1 -I.\-}

r fl

'.' If I g(y) IP
= i~O" _, x _ y dy UP(x) dx

r f"" If I g( v) jP .~ c L ~ dy Ix - til pI', IX- t1+ II pI", dx.
i~O I, - I X }

(3.4 )

For each i, we then break the inner integral of the last expression into three
integrals over (-I, t,), (f" 1,+ I)' and (fi+ 1> I), respectively, we shall
estimate the corresponding terms separately. First, by changing variables

t,+ 1 - "
y-t i = 1 + Y ,

we have

f"+' If"t' g( v) IP~dy Ix- til pI', Ix- t i + ,I pro< , dx
" 11 .\ J

=(t1+,-t1)PI;+Pro+'+1 J+ x jJ+ X g(y) X+ 1 dyiP
2 0 0 X-YY+I

x (_I)pr,(~)pr,t' dX
X+I X+l (X+I)2'

which, by Lemma 3.3 with r = T i +" S = 1- r i - 21p, R = I'i+" and S=

1 - i'i - 21p, is bounded by

C J+ X Ig(yW (l + Y) p;', Pi'o<, 2 yPi"" dY
o



244 YUAN XU

under the conditions (3.2). Thus we have obtained

JI'" !JI'+' g(y) IP J"+I
I, Ii x_ydy UP(x)dx,,;;c I, Ig(yWvP(y)dy.

Second, let {=(f j +f;+I)/2, we have

+c r[r~' Ig(y)1 dyT IX-f;lpT'dx

+ crIr g~,) dyl
P
Ix- fjl pT, dx.

I, 1,-1 X Y

By Holder inequality, the first term of the above is bounded by

(3.5 )

J
li [f'i JP/qf"+'c_llg(yW VP(y)dy -I [V(y)]-qdy ii IX-fj+llpT,.ldx

,,;; C 1r Ig(y)iP VP(y) dy
-I

under the conditions (3.2). The second term can be estimated similarly.
Upon changing variables x - f j = u, Y - f; = -v, the third term becomes

f
(/'+'-'')/2\f(l'-I'-1i/2 g(y) IP

C 1 -- dv U PTi du
o 0 u+ v

which, by Lemma 3.4, is bounded by

under the conditions (3.2). Thus we have proved

f li+'lf" g(y) IP fl'
r, _lx_ydy uP(x)dx,,;;c _llg(y)iPVP(y)dy.

Similarly, we can prove that under the conditions (3.2)

JI'" IJI g(v) jP JI~dy UP(x)dx,,;;c Ig(y)iP VP(y)dy.
I( ti+1 x } 11 +-1
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The desired inequality (3.1) follows from the above two inequalities, (3.4)
and (3.5). I

LEMMA 3.6. Let 1 < p < +00, and s < l/q. Then for T> I

where

fT If1 g( y) IP f1-- dy (1 + x)'P dx ~ cO r( T) Ig( y W (1 - y)'P dy,
o ox+y 0

(3.6 )

{

TrP-P+l

or( T) = log T, '

1,

if rp- p> -1,

if rp- p = -1,

if rp - p < -1.

(3.7 )

Proof We write the left hand side of (3.6) as two terms by breaking the
outer integral into two integrals over [0, 1] and [1, T], respectively. The
first term is bounded by

f1 If1 g( y) IP f1-- dy dx ~ c Ig( y W (1 - y)'P dy
o ox+y 0

under the condition s < l/q, which can be proved by first changing the
variables X + 1 = 1/( 1 - x), Y + 1 = 1/( 1 - y), and then applying Lem
mas 3.1 and 3.2 in exactly the same way as in the proof of Lemma 3.4. The
second term is bounded by

c If: Ig(y)1 d)fr(1 + x)'P-P dx,

which, by the Holder inequality, is bounded by

C 1 ( Ig(yW (1- y)'P dy (( (1- y)-Sq dyr,q ( (1 + x)'P -P dx

~ cOr(T) rIg(y)jP (1- y)'P dy,
o

since s < l/q. The proof is completed. I

4. THE GENERALIZED JACOBI SERIES

Let d~ be a generalized Jacobi distribution. Let S,,(drx, f) be the partial
sum of the generalized Jacobi series, i.e.,

,,-1

S,,(drx, f, x) = L Ck(f) pk(drx, x),
k~O

(4.1 )
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(4.2)

Our main results on the mean convergence of the generalized Jacobi series
are the following.

THEOREM 4.1. Let da be a generalized Jacobi distribution, and let u and
w he generalized Jacobi weight functions. Let 1 < P < +00. Then

for every f such that Ilfu II d,. p < +x if and only if

(4.3 )

and

wPr/EL I
,

H,P(a' JI-x2)-Pi2 a 'EL I ,

u 4,rx'EL I ,

u 4(a' JI-x2) -4/
2 a'EL I

(4.4)

w(x) ~ cu(x). (4.5 )

Remark 4.1. When IV = u, this theorem is proved by Badkov [2].
Earlier, Muckenhoupt [11] proved this for the Jacobi series. For w # u and
the Jacobi series, see [28]. The conditions (4.4) are proved to be necessary
for very general distributions in [10]. The proof of the necessity of (4.5) in
the following is due to Paul Nevai.

Since S,,(da,.f) is a projection operator, from Theorem 4.1 and the
Weierstrass theorem we obtain

COROLLARY 4.2. Under the assumptions of Theorem 1 and conditions
(4.4) and (4.5),

lim II(S,,(da,f)-.f) wlld,.p=O
,,- 'XJ

for every f such that Ilfu II d,. P < 00.

Proof of Theorem 4.1. It follows from (2.2), (4.1), and (4.2) that

S,,(da,f,x)=r K,,(da,x,y)f(y)da(y).
-I
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Let qn(x) denote the orthonormal polynomials associated with the distribu
tion (l-x2)det(x), i.e., q,.(x)=Pn((l-(·)2)da,x). Let

hl(x, y) = p,,(da, x) Pn(det, y),

I (
.)_(I-y2)Pn(det,x)qn_l(y)

1') x, l - ,
- . x-y

and

Then it follows from [19] that

K,,(dCt, x, y) = a"hl(x, y) + bnhAx, y) + b"h 3 (x, y),

(4.6)

(4.7)

(4.8)

(4.9)

where the numbers an and bn depend on dCt and n. Since Ct' > 0, a.e., it
follows from [20] that la,,1 and Ibnl are bounded by a constant inde
pendent of n (cf. [19, pp. 358-430]). Therefore, to prove that (4.4) and
(4.5) imply (4.3), it is sufficient to prove that they imply

f, If', hk(x, y)f(Y)da(yf H,P(x)da(x)~cII/ull~,.p

for k = I, 2, and 3.
For k = I, we apply the Holder inequality and use (2.9) for the upper

bound of Pn(da). It follows easily that (4.9) is true under the condition
(4.4). For k = 2, we first note that since Sn(dCt, f) is a polynomial of degree
:::; n - I, it is sufficient to prove that

I'llI'I h2(x, y)/(y) dCt(y) II' ~t·P(x)XL!nid)(x)da(x):::;c Ilfull~,.p (4.10)

by Lemma 2.2.
From inequality (2.8) it follows that

1p,,(dCt, x)1 :::; (Ct'(x) J 1- x 2) . 1/2 XEL1,,(d). (4.11 )

Let (J = {i: ri(da) < 0, 1~ i:::; r}, and the set rn(d) be defined as

r n(d) = [ - I, 1]\ U [t i - dn - I, t I + dn - I ].

liEa

Since r,(dCt) > -1,0:::; i:::; r + I, it follows also from (2.8) that

Y E rn(d).
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Therefore, we have from (4.7) that

1 II IPI_, L,h2(x, y)f(y)Xrnld)(y)da(y) WP(X)XJnldl(X)da(x)

j.1 II' f(Y)rP,,(y)(l- y2)(a'(.y)(l_ y2)3/2)-1/2 IP
~c da(y)

-I -I x-y

X (a'(x))1 - X2)-p/2 H'P(X) da(x), (4.12)

where rP,,(y) is bounded by a constant independent of n. We now apply
Lemma 3.5 with

g = frP,,(1 - y2)1/4 (a')1/2,

U = (a' )1 - x 2) 1/2 w(a')I/p,

V= (a' )1_x2 )1/2 u(a,)-I/q (I _X2 )-1/2,

and conclude that (4.12) is bounded by Ilfull;;~.p under the conditions (4.4)
and (4.5). Next we shall show that

(11(, h2(x, y)f(Y)(I-Xrnldl(y))daCvf wP(x) XJn(d)(X) da(x)

~c Ilfull;;~.p' (4.13)

By definitions of A,,(d) and r ,,(d), the left hand side of (4.13) is bounded by
the sum of

1;;= r:~~,,_d:J-llr:;~_-11 h2(x, y)f(Y)da(yf H,P(x)da(x)

for 0:;;; j:;;; rand i E (J, where for j = 0 we replace t; + dn - 1 by tj + dn - 2 =
-I +dn- 2, and forj=r we replace t;+I-dn- ' by tj + l -dn- 2= l-dn- 2.
Since there are at most r(r + I) terms in this sum, to prove (4.13) it is
sufficient to estimate each Iij by II full ;;~. p'

From inequality (2.8), we have for i E (J

Therefore by (4.7) and (4.11),

,II/+l-d,,-l III'+d"-1 ((v)rP (y) IPIij:;;; cnprM~)i2 .• " da(y)
I,+dn- I I/-dn- I x- y

X (a'(x)~) p/2 wP(x) da(x),
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where tPn( y) is bounded by a constant independent of n. Thus, if j # i, i - t,
then

following the Holder inequality and conditions (4.4). Since iEa, T;(det.) <0,
this gives us the desired bound. For j= i, we first break the outer integral
of Iii as integrals over [t;+dn- ' , (] and [(, ti+l-dn- I

], respectively,
where (= (t I + t; + 1)/2. For the second term, the above method for j # i,
i-I can be applied to derive the desired bound. For the first term, we
further break the inner integral to integrals over [Ii-dn- I

, Ii] and
[ti' t;+dn- I

]. The essential term is

f
" If,,+dn-'f(J').J.. (J') IPnpr,(d~)/2 -1 . ::n, det.(y)
li+dn Ii X J

x (x - Ii) -pr,(d~)/2 +pr,(wl + r,(d~) dx,

which, by changing variables x - t; = dn- I
( I + X) and y - t; = dn -It1- Y),

can be estimated by Lemma 3.6 with r = -T;(det.)/2 + T;(w) + T;(det.)/p,
s=Ti(u)-Ti(det.)/q and T=(i;-t;)d- 1n-l as

~ cnpr,(d~)/2 - rp- I(JA T) r If(y) et.'(yW (1 - Y)'P dY
o

where s < l/q is implied by u- 4 ';t.' E L 1 at (4.4). Note that (4.5) is equivalent
to r;(",)~r;(u), which implies that Ti(det.)/2-r+s~0. From this,
s< l/q, and the definition of (JAn) at (3.7), it follows that

Thus we have proved that I;; is bounded by II full ~~, P' Similarly one can
estimate li,i-1' Therefore we have proved (4.13). The inequality (4.10), thus
inequality (4.9) for k = 2, now follows from (4.12) and (4.13).

For k = 3, we use a dual argument and derive the desired bound from
the case k = 2. This argument does not depend on the fact that our weight
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functions are the generalized Jacobi ones. We refer to [28, p. 889] for the
detail. Thus, the proof for the sufficient part is completed.

The necessity of (4.4) is proved in [10] for very general distributions.
We now prove the necesity of the condition (4.5). Since S,J is a projector,
it follows from (4.3) that S,Jconverges tofin 11'11'11",." norm. Therefore by
Fatou's Lemma

Ilfll'll",.,,~(' Ilfull",.!,

for every f such that II filii ,h.!, < ,f). In particular, f can be taken as
characteristic functions of intervals in [ - I, I]. Therefore, we obtain

(w:x')(x) ~ c(u:x')(x), a.e.

This leads to (4.5). I
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